516 research outputs found

    Treatment-seeking rates in malaria endemic countries

    Get PDF
    BACKGROUND: The proportion of individuals who seek treatment for fever is an important quantity in understanding access to and use of health systems, as well as for interpreting data on disease incidence from routine surveillance systems. For many malaria endemic countries (MECs), treatment-seeking information is available from national household surveys. The aim of this paper was to assemble sub-national estimates of treatment-seeking behaviours and to predict national treatment-seeking measures for all MECs lacking household survey data. METHODS: Data on treatment seeking for fever were obtained from Demographic and Health Surveys, Malaria Indicator Surveys and Multiple Cluster Indicator Surveys for every MEC and year that data were available. National-level social, economic and health-related variables were gathered from the World Bank as putative covariates of treatment-seeking rates. A generalized additive mixed model (GAMM) was used to estimate treatment-seeking behaviours for countries where survey data were unavailable. Two separate models were developed to predict the proportion of fever cases that would seek treatment at (1) a public health facility or (2) from any kind of treatment provider. RESULTS: Treatment-seeking data were available for 74 MECs and modelled for the remaining 24. GAMMs found that the percentage of pregnant women receiving prenatal care, vaccination rates, education level, government health expenditure, and GDP growth were important predictors for both categories of treatment-seeking outcomes. Treatment-seeking rates, which varied both within and among regions, revealed that public facilities were not always the primary facility type used. CONCLUSIONS: Estimates of treatment-seeking rates show how health services are utilized and help correct reported malaria case numbers to obtain more accurate measures of disease burden. The assembled and modelled data demonstrated that while treatment-seeking rates have overall increased over time, access remains low in some malaria endemic regions and utilization of government services is in some areas limited

    Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization.

    Get PDF
    Maps of infectious disease-charting spatial variations in the force of infection, degree of endemicity and the burden on human health-provide an essential evidence base to support planning towards global health targets. Contemporary disease mapping efforts have embraced statistical modelling approaches to properly acknowledge uncertainties in both the available measurements and their spatial interpolation. The most common such approach is Gaussian process regression, a mathematical framework composed of two components: a mean function harnessing the predictive power of multiple independent variables, and a covariance function yielding spatio-temporal shrinkage against residual variation from the mean. Though many techniques have been developed to improve the flexibility and fitting of the covariance function, models for the mean function have typically been restricted to simple linear terms. For infectious diseases, known to be driven by complex interactions between environmental and socio-economic factors, improved modelling of the mean function can greatly boost predictive power. Here, we present an ensemble approach based on stacked generalization that allows for multiple nonlinear algorithmic mean functions to be jointly embedded within the Gaussian process framework. We apply this method to mapping Plasmodium falciparum prevalence data in sub-Saharan Africa and show that the generalized ensemble approach markedly outperforms any individual method

    Polarized Matrix Infrared Spectra Of Cyclopentadienone - An Important Reactive Intermediate In Combustion And Biomass Pyrolysis

    Get PDF
    A detailed vibrational analysis of the infrared spectra of cyclopentadienone (C5H4=O and C5D4=O) in rare gas matrices has been carried out. Ab initio coupled-cluster anharmonic force field calculations were used to guide the assignments. Flash pyrolysis of o-phenylene sulfite (C6H4O2SO and C6D4O2SO) was used to provide a molecular beam of cyclopentadienone entrained in the rare gas carrier. The beam was interrogated with time-of-flight photoionization mass spectrometry (TOF-PIMS), confirming the clean, intense production of C5H4=O. Matrix isolation infrared spectroscopy was coupled with 355 nm polarized UV for photo-orientation and linear dichroism experiments to determine the symmetries of the vibrations

    Seasonality of Plasmodium falciparum transmission: a systematic review

    Get PDF
    This article is fully open access and the published version is available free of charge from the jounal website.http://www.malariajournal.com/content/14/1/343Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Keywords: Plasmodium falciparum ; Seasonality; Climatic driversAcknowledgements This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. DLS is funded by a grant from the Bill & Melinda Gates Foundation (OPP1110495), which also supports RCR. PMA is grateful to the University of Utrecht for supporting him with The Belle van Zuylen Chair. PWG is a Career Development Fellow (K00669X) jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and receives support from the Bill and Melinda Gates Foundation (OPP1068048, OPP1106023)

    Plasmodium falciparum Malaria Endemicity in Indonesia in 2010

    Get PDF
    BACKGROUND: Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. METHODS: Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006-2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985-2009). After quality control, 2,516 were included into a national database of age-standardized 2-10 year old PfPR data (PfPR(2-10)) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR(2-10) endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. RESULTS: We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. CONCLUSION: While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies

    The global distribution and burden of dengue.

    Get PDF
    Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation

    Patterns of malaria-related hospital admissions and mortality among Malawian children: an example of spatial modelling of hospital register data

    Get PDF
    BACKGROUND: Malaria is a leading cause of hospitalization and in-hospital mortality among children in Africa, yet, few studies have described the spatial distribution of the two outcomes. Here spatial regression models were applied, aimed at quantifying spatial variation and risk factors associated with malaria hospitalization and in-hospital mortality. METHODS: Paediatric ward register data from Zomba district, Malawi, between 2002 and 2003 were used, as a case study. Two spatial models were developed. The first was a Poisson model applied to analyse hospitalization and minimum mortality rates, with age and sex as covariates. The second was a logistic model applied to individual level data to analyse case-fatality rate, adjusting for individual covariates. RESULTS AND CONCLUSION: Rates of malaria hospitalization and in-hospital mortality decreased with age. Case fatality rate was associated with distance, age, wet season and increased if the patient was referred to the hospital. Furthermore, death rate was high on first day, followed by relatively low rate as length of hospital stay increased. Both outcomes showed substantial spatial heterogeneity, which may be attributed to the varying determinants of malaria risk, health services availability and accessibility, and health seeking behaviour. The increased risk of mortality of children referred from primary health facilities may imply inadequate care being available at the referring facility, or the referring facility are referring the more severe cases which are expected to have a higher case fatality rate. Improved prognosis as the length of hospital stay increased suggest that appropriate care when available can save lives. Reducing malaria burden may require integrated strategies encompassing availability of adequate care at primary facilities, introducing home or community case management as well as encouraging early referral, and reinforcing interventions to interrupt malaria transmission
    corecore